Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Gms / Litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptone</td>
<td>10.000</td>
</tr>
<tr>
<td>Dipotassium hydrogen phosphate</td>
<td>2.000</td>
</tr>
<tr>
<td>Lactose</td>
<td>5.000</td>
</tr>
<tr>
<td>Saccharose (Sucrose)</td>
<td>5.000</td>
</tr>
<tr>
<td>Eosin - Y</td>
<td>0.400</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>0.065</td>
</tr>
<tr>
<td>Agar</td>
<td>13.500</td>
</tr>
<tr>
<td>Final pH (at 25°C)</td>
<td>7.2±0.2</td>
</tr>
</tbody>
</table>

Formula adjusted, standardized to suit performance parameters

Directions

Either streak, inoculate or surface spread the test inoculum (50-100 CFU) aseptically on the plate.

Principle And Interpretation

Eosin Methylene Blue (EMB) Agar was originally devised by Holt-Harris and Teague (1) and further modified by Levine (5). The above medium is a combination of the Levine and Holt-Harris and Teague formulae which contains peptone and phosphate as recommended by Levine and two carbohydrates as suggested by Holt-Harris and Teague. Methylene blue and Eosin-Y inhibit gram-positive bacteria to a limited degree. These dyes serve as differential indicators in response to the fermentation of carbohydrates. The ratio of eosin and methylene blue is adjusted approximately to 6:1. Sucrose is added to the medium as an alternative carbohydrate source for typically lactose-fermenting, gram-negative bacilli, which on occasion do not ferment lactose or do so slowly. The coliforms produce purplish black colonies due to taking up of methylene blue-eosin dye complex, when the pH drops. The dye complex is absorbed into the colony. Nonfermenters probably raise the pH of surrounding medium by oxidative deamination of protein, which solubilizes the methylene blue-eosin complex resulting in colourless colonies (2). Some strains of *Salmonella* and *Shigella* species do not grow in the presence of eosin and methylene blue. Further tests are required to confirm the isolates.

Peptone serves as source of carbon, nitrogen, and other essential growth nutrients. Lactose and sucrose are the sources of energy by being fermentable carbohydrates. Eosin-Y and methylene blue serve as differential indicators. Phosphate buffers the medium.

The test sample can be directly streaked on the medium plates. Inoculated plates should be incubated, protected from light. However standard procedures should be followed to obtain isolated colonies. A non-selective medium should be inoculated in conjunction with EMB Agar. Confirmatory tests should be further carried out for identification of isolated colonies.

Type of specimen

Clinical samples- Faecal samples

Specimen Collection and Handling

For clinical samples follow appropriate techniques for handling specimens as per established guidelines (3,4). After use, contaminated materials must be sterilized by autoclaving before discarding.

Warning and Precautions

In Vitro diagnostic use only. Read the label before opening the container. Wear protective gloves/protective clothing/eye protection/face protection. Follow good microbiological lab practices while handling specimens and culture. Standard precautions as per established guidelines should be followed while handling clinical specimens. Safety guidelines may be referred in individual safety data sheets.
Limitations

1. Individual organisms differ in their growth requirement and may show variable growth patterns on the medium.
2. Each lot of the medium has been tested for the organisms specified on the COA. It is recommended to users to validate the medium for any specific microorganism other than mentioned in the COA based on the user’s unique requirement.
3. Confirmatory tests should be further carried out for identification of isolated colonies.
4. Some strains of *Salmonella* and *Shigella* species do not grow in the presence of eosin and methylene blue.
5. It is recommended to store the plates at 24-30°C to avoid minimum condensation.

Performance and Evaluation

Performance of the medium is expected when used as per the direction on the label within the expiry period when stored at recommended temperature.

Quality Control

Appearance
Light pink to purple homogeneous free flowing powder

Gelling
Firm, comparable with 1.35% Agar gel.

Colour and Clarity of prepared medium
Reddish purple coloured, opalescent gel with greenish cast and finely dispersed precipitate forms in Petri plates

Reaction
Reaction of 3.6% w/v aqueous solution at 25°C. pH : 7.2±0.2

pH
7.00-7.40

Cultural Response
Cultural characteristics observed after an incubation at 35 - 37°C for 18 - 24 hours

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum (CFU)</th>
<th>Growth</th>
<th>Recovery</th>
<th>Colour of colony</th>
</tr>
</thead>
<tbody>
<tr>
<td># Klebsiella aerogenes ATCC 13048 (00175*)</td>
<td>50-100</td>
<td>good</td>
<td>40-50%</td>
<td>pink, without sheen purple with black centre and green metallic sheen pink, mucoid</td>
</tr>
<tr>
<td>Escherichia coli ATCC 25922 (00013*)</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=50%</td>
<td>purple with black centre and green metallic sheen</td>
</tr>
<tr>
<td>Klebsiella pneumoniae ATCC 13883 (00097*)</td>
<td>50-100</td>
<td>good</td>
<td>40- 50%</td>
<td>colourless</td>
</tr>
<tr>
<td>* Proteus mirabilis* ATCC 25933</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=50%</td>
<td>colourless</td>
</tr>
<tr>
<td>Salmonella Typhimurium ATCC 14028 (00031*)</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=50%</td>
<td>colourless</td>
</tr>
<tr>
<td>Staphylococcus aureus subsp. aureus ATCC 25923 (00034*)</td>
<td>>=10⁴</td>
<td>inhibited</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Key : (*) Corresponding WDCM numbers. (#)
Formerly known as *Enterobacter aerogenes*

Storage and Shelf Life
On receipt store between 20-30°C Use before expiry date on the label. Product performance is best if used within stated expiry period.

Disposal
User must ensure safe disposal by autoclaving and/or incineration of used or unusable preparations of this product. Follow established laboratory procedures in disposing of infectious materials and material that comes into contact with clinical sample must be decontaminated and disposed of in accordance with current laboratory techniques (3,4).

Reference

Please refer disclaimer Overleaf.