Dextrose Tryptone HiCynth™ Agar

Dextrose Tryptone HiCynth™ Agar is recommended for the detection and enumeration of mesophilic and thermophilic aerobic microorganisms in foods.

Composition**

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Gms / Litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiCynth™ Peptone No.3*</td>
<td>10.000</td>
</tr>
<tr>
<td>Dextrose</td>
<td>5.000</td>
</tr>
<tr>
<td>Bromocresol purple</td>
<td>0.040</td>
</tr>
<tr>
<td>Agar</td>
<td>15.000</td>
</tr>
</tbody>
</table>

**Formula adjusted, standardized to suit performance parameters
*Chemically defined peptone

Directions

Suspend 30.04 grams in 1000 ml distilled water. Heat to boiling to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Cool to 45-50°C. Mix well and pour into sterile Petri plates.

Principle And Interpretation

Canned foods are most often prone to flat-sour spoilage due to contamination by either mesophilic or thermophilic aerobic spore-formers. Inadequate heat processing is commonly responsible for flat-sour spoilage since spores of mesophilic bacteria are moderately resistant to moist heat. Also *Bacillus stearothermophilus* is the typical species responsible for this type of spoilage (1,2).

Bacillus coagulans (*Bacillus thermoacidurans*, a soil organism) is frequently isolated from flat-sour spoilage of canned tomato and dairy products. In flat-sour spoilage, carbohydrates are fermented with the production of lower fatty acids, which sour the product. The small amount of gas produced does not affect the flat appearance of the ends of container.

Dextrose Tryptone Agar, formulated by Williams is recommended for the detection and enumeration of thermophilic flat sour spoilage organisms (3). It is also recommended for general cultural studies by Cameron (4) and other associations (5-9). Dextrose Tryptone Agar is also useful for enumeration of mesophiles and thermophiles in cereal and cereal products, dehydrated fruits, vegetables and spices (10). Dextrose Tryptone HiCynth™ Agar is a modification wherein animal or vegetable based peptones are replaced with chemically defined peptones to avoid BSE / TSE risk associated with animal peptone.

HiCynth™ peptone No.3 and HiCynth™ peptone No.6 provides nitrogenous and carbonaceous compounds, long chain amino acids, vitamins and other essential growth nutrients to the organisms. Dextrose serves as an energy source by being the fermentable carbohydrate while bromocresol purple is a pH indicator. Acid producing organisms produce yellow colonies. The plates should be incubated at 55°C for 48 hours in a humid incubator.

While using the agar media, serially diluted test sample are mixed with the media in sterile Petri dishes. Standard procedures issued by various associations should be followed for testing of samples.

Quality Control

Appearance
Light yellow to greenish yellow homogeneous free flowing powder

Gelling
Firm, comparable with 1.5% Agar gel

Colour and Clarity of prepared medium
Purple coloured, clear to slightly opalescent gel forms in Petri plates

Reaction
Reaction of 3% w/v aqueous solution at 25°C. pH : 6.7±0.2

pH
7.20-7.60
Cultural Response
Cultural characteristics observed after an incubation at 54-56°C for 36-48 hours.

Cultural Response

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum (CFU)</th>
<th>Growth</th>
<th>Recovery</th>
<th>Colour of colony</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus brevis ATCC 8246</td>
<td>50-100</td>
<td>good-luxuriant (with or without dextrose fermentation)</td>
<td>50-70%</td>
<td>yellow</td>
</tr>
<tr>
<td>Bacillus coagulans ATCC 8038</td>
<td>50-100</td>
<td>good-luxuriant</td>
<td>50-70%</td>
<td>yellow</td>
</tr>
<tr>
<td>Bacillus stearothermophilus ATCC 7953</td>
<td>50-100</td>
<td>good-luxuriant</td>
<td>50-70%</td>
<td>yellow</td>
</tr>
</tbody>
</table>

Storage and Shelf Life
Store below 30°C in tightly closed container and the prepared medium at 2-8°C. Use before expiry date on the label.

Reference