Mueller Hinton Agar

Mueller Hinton Agar is used for determination of susceptibility of microorganisms to antimicrobial agents.

Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Gms / Litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat, infusion solids from 300g</td>
<td>2,000</td>
</tr>
<tr>
<td>Casein acid hydrolysate</td>
<td>17,500</td>
</tr>
<tr>
<td>Starch</td>
<td>1,500</td>
</tr>
<tr>
<td>Agar</td>
<td>17,000</td>
</tr>
<tr>
<td>Final pH (at 25°C)</td>
<td>7.3±0.1</td>
</tr>
</tbody>
</table>

Formula adjusted, standardized to suit performance parameters

- Equivalent to Beef infusion from

Directions

Suspend 38 grams in 1000 ml distilled water. Heat to boiling to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Cool to 45-50°C. Mix well and pour into sterile Petri plates.

Note: The performance of this batch has been tested and standardised as per the current CLSI(formerly, NCCLS) document M6-protocols for Evaluating Dehydrated Mueller Hinton Agar.

Principle And Interpretation

The Mueller Hinton formulation was originally developed as a simple, transparent agar medium for the cultivation of pathogenic *Neisseria* species (1). Other media were subsequently developed that replaced the use of Mueller Hinton Agar for the cultivation of pathogenic *Neisseria* species, but it became widely used in the determination of sulfonamide resistance of gonococci and other organisms. Mueller Hinton Agar is now used as a test medium for antimicrobial susceptibility testing (2). Mueller Hinton Agar is recommended for the diffusion of antimicrobial agents impregnated on paper disc through an agar gel as described in CLSI Approved Standard (3). Mueller Hinton Agar has been selected by the CLSI for several reasons:

i. It demonstrates good batch-to-batch reproducibility for susceptible testing.

ii. It is low in sulfonamide, trimethoprim and tetracycline inhibitors.

iii. It supports the growth of most non-fastidious bacterial pathogens and

iv. Many data and much experience regarding its performance have been recorded (9).

Kirby-Bauer et al recommended this medium for performing antibiotic susceptibility tests using a single disc of high concentration (4). WHO Committee on Standardization of Susceptibility Testing has accepted Mueller Hinton Agar for determining the susceptibility of microorganisms because of its reproducibility (5). Mueller Hinton Agar with 5% sheep blood and Mueller Hinton Agar with Hemoglobin have been recommended for antimicrobial susceptibility testing of *Streptococcus pneumoniae* and *Haemophilus influenzae*.

Meat infusion and casein acid hydrolysate provide nitrogenous compounds, carbon, sulphur and other essential nutrients. Starch acts as a protective colloid against toxic substances present in the medium. Starch hydrolysis yields dextrose, which serves as a source of energy. These ingredients are selected for low thymine and thymidine content as determined by MIC values for *Enterococcus faecalis* with sulfamethoxazoletrimethoprim (SXT). Calcium and magnesium ion concentrations are adjusted to provide the amounts recommended by CLSI to give the correct MIC values with aminoglycosides and *Pseudomonas aeruginosa* (2).

The Kirby-Bauer procedure is based on agar diffusion of antimicrobial substances impregnated on paper discs. This method employs disc with a single concentration of antimicrobial agent and the zone diameters observed are correlated with minimum inhibitory concentration (MIC) values (1, 2, 6). A standardized suspension of the organism is swabbed over the entire surface of the medium. Paper discs impregnated with specific amounts of antimicrobial agents are then placed on the surface of the medium, incubated and zones of inhibition around each disc are measured. The susceptibility is determined by comparing...
with CLSI standards (7). The various factors, which influence disc diffusion susceptibility tests, are agar depth, disc potency, inoculum concentration, pH of the medium and beta-lactamase production by test organisms (7, 9).

Mueller Hinton Agar is not appropriate for assay by disc diffusion method with slow growing organisms, anaerobes and capnophiles. With slow growing organisms, increased incubation may cause deterioration of diffusing antibiotic and produce unprecise readings (8).

Quality Control

Appearance
Cream to yellow homogeneous free flowing powder

Gelling
Firm, comparable with 1.7% agar gel.

Colour and Clarity of prepared medium
Light amber coloured clear to slightly opalescent gel froms in Petri plates

Reaction
Reaction of 3.8% w/v aqueous solution at 25°C. pH : 7.3±0.1

pH
7.20-7.40

Cultural Response
M173: Cultural characteristics observed after an incubation at 35 - 37°C for 18 - 24 hours.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum (CFU)</th>
<th>Growth</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli ATCC 25922</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
<tr>
<td>Haemophilus influenzae ATCC 49247</td>
<td>50-100</td>
<td>good-luxuriant(on Mueller Hinton Chocolate Agar)</td>
<td>>=70%</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae ATCC 49226</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 27853</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 25923</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
<tr>
<td>Enterococcus faecalis ATCC 29212</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
<tr>
<td>Streptococcus pneumoniae ATCC 6305</td>
<td>50-100</td>
<td>luxuriant (on Mueller Hinton Blood Agar)</td>
<td>>=70%</td>
</tr>
<tr>
<td>Escherichia coli ATCC 35218</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 43300</td>
<td>50-100</td>
<td>luxuriant</td>
<td>>=70%</td>
</tr>
</tbody>
</table>

Storage and Shelf Life
Store below 30°C in tightly closed container and the prepared medium at 2 - 8°C. Use before expiry date on the label.

Reference

Please refer disclaimer Overleaf.

Disclaimer:
User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia™ publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia™ Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal or therapeutic use but for laboratory, diagnostic, research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.