HiPer® Ligation Teaching Kit

Product Code: HTBM019

Number of experiments that can be performed: 5/20

Duration of Experiment
Protocol: 3.5 hours
Agarose Gel Electrophoresis: 1 hour

Storage Instructions:
- The kit is stable for 12 months from the date of manufacture
- Store Lambda DNA digest, T4 DNA Ligase and 10X Ligase Buffer at -20°C
- Store 6X Gel Loading Buffer at 2-8 °C
- Other kit contents can be stored at room temperature (15-25°C)
Index

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aim</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Principle</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Kit Contents</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Materials required But Not Provided</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Storage</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Important Instructions</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Procedure</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Agarose Gel Electrophoresis</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Flowchart</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Observation and Result</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Interpretation</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>Troubleshooting Guide</td>
<td>7</td>
</tr>
</tbody>
</table>
Aim:

To perform ligation of Lambda (\(\lambda\)) DNA HindIII digest and observing the efficiency of ligation reaction through agarose gel electrophoresis.

Introduction:

Two linear DNA molecule ends (either from the same or different molecules) can be joined together through a process called ligation. This process involves the formation of a covalent bond between two DNA fragments (having blunt or overhanging, complementary, ‘sticky’ ends) by the help of a specialized enzyme named as ligase. DNA ligase forms a phosphodiester bond between the 3’ hydroxyl of one nucleotide and the 5’ phosphate of another. This process is the key player in constructing recombinant DNA molecule.

Principle:

Recombinant DNA is made possible by two important enzymes, restriction enzymes and DNA ligase. Restriction enzymes ‘cut’ DNA at a specific location and DNA ligase is used to ‘glue’ two fragments of DNA together. DNA ligation is the process through which two DNA molecule ends from the same or different molecules are joined together. During this process a phosphodiester bond is formed between the 3’ hydroxyl group of one fragment and the 5’ phosphate of another. This ligation reaction is catalyzed by a DNA ligase enzyme which ligates DNA fragments having blunt or overhanging, complementary, ends. It is easier to ligate molecules with complementary sticky ends than blunt ends. The commonly used DNA ligases in nucleic acid research is T4 DNA ligase and *E. coli* DNA ligase. *E. coli* DNA ligase is more specific for cohesive ends than T4 DNA ligase but can’t be used for cloning purpose. T4 DNA ligase is the most versatile and commonly used ligase for DNA cloning. T4 DNA ligase is approximately 60000 dalton (60 kD) protein produced by Bacteriophage T4. This ATP dependent enzyme covalently joins blunt or compatible cohesive ends, as well as nicks in double-stranded DNA. A 5’-phosphoryl group is required for ligation to a 3’-hydroxyl group. Generally cohesive end ligation is carried out at lower temperature (12° to 16°) for the maintenance of a good balance between annealing of ends and activity of the enzyme. Blunt end ligation can be carried out at 24°C as annealing of ends is not a factor. Due to the lack of cohesive ends blunt end ligation is more complex compared to cohesive end ligation.

A typical ligation reaction requires the following components:
- Two or more fragments of DNA that have either blunt or compatible cohesive ends
- A buffer which contains ATP
- T4 DNA ligase

![Fig 1: Schematic representation of a ligation reaction](image-url)
Kit Contents:

This kit demonstrates the ligation of Lambda (\(\lambda\)) DNA- *HindIII* digest using T4 DNA ligase

Table 1: Enlists the materials provided in this kit with their quantity and recommended storage

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Product Code</th>
<th>Materials Provided</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TKC191</td>
<td>Lambda DNA- HindIII digest</td>
<td>0.06 ml</td>
<td>0.24 ml</td>
</tr>
<tr>
<td>2</td>
<td>*TKC192</td>
<td>10X Ligase Assay Buffer</td>
<td>0.010 ml</td>
<td>0.040 ml</td>
</tr>
<tr>
<td>3</td>
<td>*TKC193</td>
<td>T4 DNA Ligase</td>
<td>0.008 ml</td>
<td>0.032 ml</td>
</tr>
<tr>
<td>4</td>
<td>ML024</td>
<td>Molecular Biology Grade Water</td>
<td>0.03 ml</td>
<td>0.120 ml</td>
</tr>
<tr>
<td>5</td>
<td>MB002</td>
<td>Agarose</td>
<td>3 g</td>
<td>12 g</td>
</tr>
<tr>
<td>6</td>
<td>ML016</td>
<td>50X TAE</td>
<td>60 ml</td>
<td>240 ml</td>
</tr>
<tr>
<td>7</td>
<td>ML015</td>
<td>6X Gel Loading Buffer</td>
<td>0.03 ml</td>
<td>0.120 ml</td>
</tr>
<tr>
<td>8</td>
<td>CG281</td>
<td>Polypropylene Tube (0.5 ml)</td>
<td>10 Nos.</td>
<td>40 Nos.</td>
</tr>
</tbody>
</table>

* Always give a quick spin before opening the vial as the liquid material may stick to the wall or to the cap of the vial

Materials Required But Not Provided:

Glasswares: Measuring cylinder, Beaker
Reagents: Ethidium bromide (10 mg/ml), Distilled water
Other requirements: Electrophoresis apparatus, UV Transilluminator, Water Bath, Micropipettes, Tips, Adhesive tape, Crushed ice, Microwave/Hotplate/Burner

Storage:

HiPer® Ligation Teaching Kit is stable for 12 months from the date of manufacture without showing any reduction in performance. On receipt, store the Lambda DNA- *HindIII* digest, T4 DNA Ligase and 10X Ligase Assay Buffer at -20°C. 6X Gel Loading Buffer should be stored at 2-8°C. Other kit contents can be stored at room temperature (15-25°C).

Important Instructions:

1. Read the entire experiment carefully before starting the experiment.
2. T4 DNA ligase and 10X ligase buffers are temperature sensitive and should always be placed on ice during the experiment.
3. Thaw the ligase buffer on ice and store immediately at -20°C.
4. Use fresh tips while adding different solutions to the tube.
5. While preparing the reaction mixture the ligase should always be added at the end.
Procedure:

1. Before starting the experiment, crush ice and place the vials containing Lambda DNA-\textit{HindIII} digest, 10X ligase buffer and T4 DNA ligase onto it.
2. In this experiment Lambda DNA-\textit{HindIII} digest is ligated with T4 DNA ligase.
3. Set up the reaction mixture as follows:

 - Lambda (\(\lambda\)) DNA- \textit{HindIII} digest \(- 4.0 \mu l\)
 - 10X Ligase Assay Buffer \(- 1.0 \mu l\)
 - Molecular Biology Grade Water \(- 4.0 \mu l\)
 - T4 DNA Ligase \(- 1.0 \mu l\)

 Total \(- 10 \mu l\)

4. After preparing the reaction tube, mix the components by gentle pipetting and tapping.
5. Incubate the tubes at 16°C waterbath for 3 hours.
6. After incubation run the samples on agarose gel as given below.

Agarose Gel Electrophoresis:

Preparation of 1X TAE: To prepare 500 ml of 1X TAE buffer add 10 ml of 50X TAE Buffer to 490 ml of sterile distilled water*. Mix well before use.

Preparation of agarose gel: To prepare 50 ml of 1% agarose gel, measure 0.5 g agarose in a glass beaker or flask and add 50 ml of 1X TAE buffer. Heat the mixture on a microwave or hot plate or burner by swirling the glass beaker/flask occasionally, until agarose dissolves completely (Ensure that the lid of the flask is loose to avoid buildup of pressure). Allow the solution to cool to about 55-60°C. Add 0.5 \(\mu l\) Ethidium bromide (10 mg/ml), mix well and pour the gel solution into the gel tray. Allow the gel to solidify for about 30 minutes at room temperature.

NOTE: Ethidium bromide is a powerful mutagen and is very toxic. Appropriate safety precautions should be taken by wearing latex gloves; however, use of nitrile gloves is recommended.

Loading of the DNA samples: To prepare sample for electrophoresis, take 1\(\mu l\) of 6X gel loading buffer and 5 \(\mu l\) of Lambda (\(\lambda\)) DNA- \textit{HindIII} digest in a tube, mix well by pipetting and load the sample into the first well. Add 2 \(\mu l\) of 6X gel loading buffer to the ligation mix, mix well by pipetting and load the sample into the next well.

Electrophoresis: Connect power cord to the electrophoretic power supply according to the conventions: Red-Anode and Black- Cathode. Electrophorese at 100-120 V and 90 mA until dye markers have migrated an appropriate distance.

Molecular biology grade water is recommended (Product code: ML024).
Flowchart:

1. Keep all the components on ice
2. Prepare reaction mixture for the ligation reaction
3. Mix gently and incubate at 16°C for 3 hours
4. Visualize the ligated band after electrophoresing on agarose gel

Observation and Result:

Perform Agarose Gel Electrophoresis. Visualize the DNA bands (ligated as well as unligated) using UV Transilluminator.

<table>
<thead>
<tr>
<th>Lanes</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Lane 1: Lambda (λ) DNA- *HindIII* digest (unligated)
Lane 2: Ligated sample

Fig 2: gel image of ligation reaction observed after Agarose Gel Electrophoresis

After running the ligated and unligated samples on agarose gel, check the bands of both the sample and compare the band pattern of two samples.
Interpretation:

After running the ligated and unligated samples on agarose gel, one can observe that the seven double stranded fragments formed by digestion of lambda DNA with \textit{HindIII} are ligated by T4 DNA ligase to give a single band.

Troubleshooting Guide:

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Partial or no ligation</td>
<td>Ligation temperature not maintained properly</td>
<td>Incubate the samples at 16°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improper addition of enzyme and buffer</td>
<td>Add appropriate amount of enzyme and buffer as given in the protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components of the reaction mixture not mixed properly</td>
<td>Ensure that all the components are thoroughly mixed by gentle pipetting after preparing the reaction mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Degradation of T4 DNA ligase or buffer</td>
<td>Always place the vials containing ligase and buffer on ice as they are temperature sensitive</td>
</tr>
</tbody>
</table>
Technical Assistance:

At HiMedia we pride ourselves on the quality and availability of our technical support. For any kind of technical assistance mail at mb@himedialabs.com

Storage temperature

15°C - 25°C

Do not use if package is damaged

HiMedia Laboratories Pvt. Limited,
23 Vadhani Industrial Estate,
LBS Marg, Mumbai-86, MS, India

Disclaimer:

User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia™ publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia™ Laboratories Pvt. Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal diagnostic or therapeutic use but for laboratory, research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.